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Abstract— In this paper we have investigate the Hyers Ulam 
stability of first order difference equation of the form 
ሺ݊ሻݕ∆  െ ሺ݊ሻݕ ൌ 0. 

1. INTRODUCTION 

The study of stability problems for various functional 
equations originated from a talk given by S.M. Ulam in 1940 
[17], Ulam discussed a number of important unsolved 
problems. Among such problems, a problem concerning the 
stability of functional equations, “Give conditions in order for 
a linear mapping nearly an approximately linear mapping to 
exist” is one of them. 

In 1941, Hyer [2] gave an answer to the problem as follows: 

Let 1E  and 2E  be two real Banach spaces and 1 2f : E E  

be a mapping. If there exists an 0  such that 

   1f x y f (x) f (y) , x, y E       

Then there exists a unique additive mapping 1 2T : E E  

such that   1f x T(x) ,x E     

Furthermore, the results of the Hyers has been generalized by 
Rassias [14]. After that researchers has extended, the Ulams 
stability problems to functional equations and generalized 
Hyer’s result in various directions (see[3, 8, 9, 15]). 
Thereafter, Ulam’s stability problem for functional equations 
was replaced by stability of differential/difference equations. 

The differential equation, 

n n 1 1
n n 1 1

0

a (t)y (t) a (t)y (t) ... a (t)y (t)
a (t)y(t) h(t) 0


   

   

has Hyper’s Ulam stability, if for given 0,  I be an open 

interval and for any function f satisfying the differential 
inequality, 

       
   

(n) (n 1) 1
n n 1 1

0

a t y t a (t)y (t) ... a t y t
,

a t y t h(t)


  

 
 

 

then there exists a function f(t) of the above equation such that 

0f (t) f (t) K( )    and 
0

limK( ) 0, t I.


    

If the proceeding statements is also true when we replace   
and K( )  by ( t )  and (t)  respectively, where 

, : I [0, )     are functions independent of f and f0 

explicitly, then we say that the corresponding differential 
equation has the generalized Hyers-Ulam stability or Hyer’s 
Ulam Rassias stability. 

Definition 1: The difference equation 

       
         

k k 1

1 0

a n y n k a n y n k 1 ...

a n y n 1 a n y n h n 0
    

    
 

has the Hyer’s Ulam stability, if forgiven 0, I  be an open 

interval and for any function f satisfying the inequality, 

       
         

k k 1

1 0

a n y n k a n y n k 1 ...

a n y n 1 a n y n h n
    

 
   

 

then there exists a solution 0f  of the above difference equation 

such that 0f (n) f (n) K( )    and 
0

limK( ) 0


   for 

n I . 

On Hyer’s Ulam stability, several works have been done in the 
field of differential equation. Obloza seems to be the 1st author 
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who has investigated the Hyers-Ulam stability of linear 
differential equation (see for e.g. ([12, 15]). After that Alison 
and Ger published their work in [1], where they have proved 
that Hyers-Ulam stability of the differential equation 

1y (t) y(t).  On this direction we refer some of the work 

[4, 5, 6, 7, 10, 17, 13, 16] to the readers and the references 
cited therein. 

The objective of this work is to investigate the Hyers-Ulam 
stability of the difference equation, 

y(n) y(n) 0     (1) 

where   is the forward difference operation, which is defined 
as f (x) f (x h) f (x), h     is the spacing between two 

consecutive arguments. 

By a solution of (1) we man a real valued function y(n) which 
satisfies (1). 

2. HYERS-ULAM STABILITY OF (1) 

This section deals with some useful Lemmas and Hyers-Ulam 
stability result of (1). 

Lemma 1(a): Assume that Z : ¥ ¡  be a real valued 
function. The inequality z(n) z(n)   is true for all 

n N,  if and only if there exists a real function 

: ¥ ¡  such that n 12 (n) 0    and 
nz(n) 2 (n)   for all n . ¥  

Proof: Assume that the inequality z(n) z(n)   hold for 

any n . ¥  Let us define a function : ¥ ¡  to be  

n(n) 2 z(n)      (2) 

Taking difference operator both sides, we get 

 
(n 1) n(n) 2 z(n 1) 2 z(n)         

 n 12 (n) z(n 1) 2z(n)      

 n 12 (n) z(n) z(n)      

As  z(n) z(n) 0.    

So, n 12 (n) 0.    

Also from (2), nz(n) 2 (n)   

Conversely assume that there exists a real function 

: ¥ ¡  such that n 12 (n) 0    for all n¥  and 

z(n) : ¥ ¡  by nz(n) 2 (n).   we have to prove that 

z(n) z(n).    

Now,  

  nz(n) 2 (n)     

    nn 1 (n) 2 (n)      

    n 1 n nn 1 2 2 2 (n)        

     nn 1 2 1 2 (n)      

 

 n n n n2 (n 1) 2 (n) 2 (n) 2 (n)          

  n n n2 (n) 2 (n) 2 (n)       

  n 1 n2 (n 1) 2 (n)      

  n 12 (n 1) z(n)     

 n 1z(n) z(n) 2 (n 1) 0        

 z(n) z(n)    

z(n) z(n)     (Hence the Lemma) 

Lemma1(b):Assume that Z : ¥ ¡  be a real valued 
function. The inequality z(n) z(n)   holds true for any 

n¥  if and only if there exists a real function : ¥ ¡  

such that n 12 (n) 0    and nz(n) 2 (n).   

The proof of the lemma is similar to Lemma 1(a), hence 
omitted. 

Theorem 2: Given 0.  A function y : ¥ ¡  satisfies 

inequality 

y(n) y(n) n    ¥  (3) 

If and only if there exists a function : ¥ ¡  such that 

ny(n) 2 (n)    (4) 

and n0 (n) 2 n     ¥  (5) 

Proof: Assume that y(n) is a real function such that 
y : ¥ ¡  is solution of the inequality (3) so 

y(n) y(n)   

y(n) y(n) y(n) , n       ¥  (6) 
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Define z(n) y(n) .  So from inequality (6), 

z(n) y(n)   holds for any n¥ . Then by 

applyingLemma1(a) there exists a real function 
 : ¥ ¡  such that 

n 12 (n) 0      (7) 

and  nz(n) 2 (n).   

ny(n) 2 (n)    

ny(n) 2 (n)    

Similarly by defining  z n y(n)  and using the Hyers 

of (6) we have z(n) y(n) n .    ¥ So according to 

Lemma 1(b) there exists a real function : ¥ ¡ such that 

n 12 (n) 0     (8) 

and   nz(n) 2 (n)   

n

n

y(n) 2 (n)
y(n) 2 (n)

  
   

 (9) 

 

Applying difference operator for both the equations (4) 
and(9)we get, 

 n

n 1 n

y(n) 2 (n)

y(n) (n 1)2 (n)2

    

   
 

Again  
n 1 n

n

y(n) (n 1)2 2 (n)
2 2 (n 1) (n)

    
   

 

 n n n2 (n) (n 1) 2 (n) 2 (n 1)          

n(n) 2 y(n) (n 1)       

   n (n 1)2 y(n 1) y(n) y(n 1) 2           

 n 1)(n) (n) 2 2        

n 1 n 12 (n 1) 2 (n) 2         

As n 1 n 12 (n) 0 2 (n) 2 0        

 n 12 2 (n),   

n 10 2 (n) 2      

n0 (n) 2 , n .      ¥  

Conversely, 

Assume that a function y : ¥ ¡  is given by (4) n ,  ¥  

where : ¥ ¡  is a real function satisfies (5) for any 

n¥ . 

Now, y(n) y(n) y(n 1) 2y(n)      

n 1 n(n 1)2 2( (n)2 )     

n 12 (n)    

2  

So  y(n) y(n)      (10) 

Similarly from (9), ny(n) (n)2   

Now,  y(n) y(n)   

y(n 1) 2y(n)    

n 1 n 1(n 1)2 2 (n)2      

n 12 (n)   

2     

So yn) y(n)       (11) 

Combining (10) & (11), we get 

y(n) y(n) n      ¥ . 

y(n) y(n)    

Hyer-Ulam Stability of difference equation (1) i.e., 
y(n) y(n) 0   . 

Theorem 3: If a function y : ¥ ¡  satisfies equality (3) i.e. 

y(n) y(n)   for n , ¥  then there exists a real no, 

C such that 
ny(n) C2 n .  ¥  

Proof: Given 0 . Since y satisfies (3) then by theorem 2, 
there exists a function : ¥ ¡  such that 

ny(n) 2 (n)   and n 20 (n) 2 , n .    ¥  

Define 
k

C lim (k)


   

n n0 (n) 2 2 (n) 0          
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k 1 k 1
j

j n j n

2 ( j) 0, k n
 



 

         

But   
k 1 k 1

j n j n

( j) ( j 1) ( j) (k) (n)
 

 

          

and 
k 1

j
n n 1 k 1 n 1 k 1

j n

1 1 1 1 1
2 ...

2 2 2 2 2




   


       

Hence    n 1 k 1

1 1
n k 0

2 2 
       
 

 

Taking limit as k ,   we get    n 1
n k 0

2 


     

 
n

n n
n 1

2
2 n 2 C 0

2 


      

n n2 2 (n) 2 C 0      

n n2 (n) 2 C     

ny(n) 2 C   
ny(n) C2 ,n .   ¥

(Hence the Theorem) 
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